Membrane module design – optimization of forward osmosis biomimetic membrane using computational fluid dynamics (CFD)

Computational fluid dynamics (CFD) analysis will provide membrane/module design strategies for Forward Osmosis (FO) process using the software Open FOAM in collaboration with **Aquaporin A/S** as part **of MEMENTO** project (http://www.memento.env.dtu.dk/). The main focus of the simulation will be to optimize membrane internal geometry (e.g. aquaporin protein and vesicle loading and porosity and tortuosity of the support material). The CFD model will be validated against the experimental study.

Project type

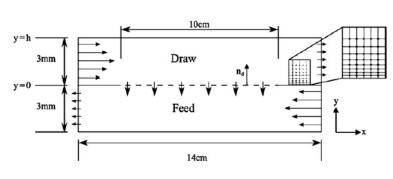
Topic is suitable for MSc project

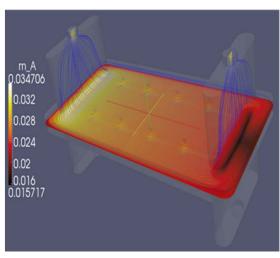
Pre-requisite

Experience with CFD software: Fluent, Comsol, Open FOAM

Group size

1-2 students


Department of supervisors


Main supervisor: DTU Environment/Aquaporin A/S

Co-supervisor: DTU Environment

Contact person

PhD Student Agata Zarebska, DTU Environment (agza@env.dtu.dk)

